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We present a numerical method for calculating the diffusion-controlled recombination 
probability of a pair of interacting particles in an isotropic medium with scavengers. The 
method is finite and has a controllable accuracy. The algorithm is remarkably simple and can 
be implemented on a programmable pocket calculator. 

1. INTR~OUCTI~N 

A fundamental quantity arising in the mathematical description of diffusional 
recombination phenomena in physical systems is the probability of recombination 
R(s, r), i.e., the probability that two particles initially separated by a distance r will 
ever recombine in a medium with a uniform distribution of scavengers (which act as 
irreversible sinks), present in a concentration proportional to s. Alternatively R(s, r) 
may be interpreted as the Laplace transform of the rate of recombination R(t, r) in a 
medium free of scavengers. 

It is generally not possible to solve the relevant equations by means of exact 
analytical methods. Various approximate and asymptotic solutions have been derived 
[ 11. However, the validity of these approximate solutions for arbitrary values of r and 
s can only be tested by an accurate numerical method, which has been lacking. We 
present a simple, yet accurate method, which is both controllable in accuracy and 
faster than evaluating some of the more complicated approximate expressions for 
E(s, r). 

2. BASIC EQUATIONS 

When the recombination is restricted to occur on a surface, then the recombination 
probability R(s, r) satisfies the differential equation 

[V . D(i) . (V + VP’) - k,c,] i? = 0, (1) 

where V is the potential interactin between the particles in units of kT, D(f) is the 
relative diffusion tensor, k, is the second-order scavenging rate constant, and c, is the 
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concentration of the scavenger. For an (n + 1)-dimensional spherical symmetric 
system, Eq. (1) may be written as 

dZE dR n 
-27+x r-dr+dr ( 

dV dlnD -k,c,R=O 
1 Do-) 

(2) 

by noting that D(r) is positive definite. Equations (1) and (2) are straightforward 
generalizations of the equations which have recently appeared [2] and which are 
based on the adjoint (backward) Smoluchowski equation. 

The recombination process is described by a boundary condition for R(s, d) at 
r = d, the distance of closest approach. Only the diffusion controlled limit needs to be 
considered. The boundary conditions are 

I+, d) = 1, lqs,r+ a)=0 (3) 

for k,c, # 0, which is the only case of interest since the k,c, = 0 results can be given 
in closed form. The partially diffusion controlled quantities are easily derived from 
the diffusion controlled quantities z(s, r) and (dl?(s, r)/dr)r=d as discussed previously 
[31* 

As the domain of r in Eq. (2) is [d, 001, i.e., semi-infinite, it is convenient to make 
a change of the independent variable by means of an isomorphism z = z(r) with 
J = ] dz/drl being nonzero in the interior of the domain of r. We assume that z(r) can 
be chosen such that the domain of z becomes [0, 11, with 1 representing the distance 
of the closest approach. 

If we let 1 be a typical length and introduce the dimensionless quantities 

D(r) r”J(r) exp(-V(r)) “* 
D(f) /“J(I) exp(- V(I)) I ’ (5) 

s = k,c,/D(I) J(I)*, (6) 

then Eq. (2) may be written in the convenient form 

d2R’ 2 dg dl? 
~+----sw~=o. 

g dz dz 

Another useful form of this equation is 

d’(d) (gx) d2g 
z dz -T--~- 

sw( gl?) = 0. 

The boundary values for I? with z as argument are 

R(s, 1) = 1, lqs, 0) = 0. 

(7) 

(8) 

(9) 
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When K(s, z) is considered the Laplace transform of the rate of recombination 
R(s, z), then a dimensionless time r is implied, 

t = D(I) J(I)2 t. (10) 

3. NUMERICAL METHOD 

Any numerical method is bound to discretize the equation in some appropriate 
manner. It is essential that this discretization is well balanced with respect to where 
and how many discretization points to place. From a numerical point of view, it is 
most convenient that the independent variable is discretized with equidistant points. 
Furthermore, it is necessary that the domain of discretization is finite, as an infinite 
domain cannot be covered with a finite number of points. This can be accomplished 
by choosing z(r) such that the domain of z becomes finite. The choice of z(r) can be 
made such that a uniform distribution of points in z-space corresponds to a 
distribution in r-space reflecting “the relative importance of the points. Ideally (at 
least for small values of s) z could be chosen such that z(r) = z(O, r) that is 

z(r) cc fr 7 dx (11) 

which makes g constant. However, for numerical purposes it is more convenient to 
choose another and simpler form of z(r). 

On ends up with a second-order two-point boundary value problem 

Mu=O, u(0, s) = 0, U(1, S) = 1, (12) 

where M is a second-order differential operator given by Eq. (7) or (8) and u is R or 
gR, respectively. 

One of the standard methods for solving this kind of boundary value problems is 
the shooting method [4], which has in fact been used for the present problem [S], but 
without the introduction of the transformation z(r). In this method one solves the 
corresponding initial value problem with u(0) = 0, u’(0) = y, and adjusts y until the 
solution satisfies u(l) = 1. There are, however, several drawbacks with this method. It 
is iterative, and thus in principle nut finite. A more serious drawback is that the 
initial value problem may become stiff, meaning that very small stepsizes are 
necessary. This can be the case in the present problem because of singularities at the 
endpoints. 

Contrary to Eq. (2), Eqs. (7) and (8) permit the use of the standard finite difference 
method [4] which gives rise to a finite algorithm with a controllable accuracy. The 
interval [0, 1 ] is divided into N pieces, each of length AZ = l/N, and the function 
U(S, z) is represented as a vector U, = U(S, zi) with z, =jAz. The second-order 



DIFFUSIONAL RECOMBINATION 461 

differential operator M is represented by a tridiagonal matrix M using the finite 
difference approximations 

du 
- N uj+ I -Uj-1 

dz 21 242 

and 

d’u Uj+l-2Uj+“j-, 
z dz LjZ Az2 

which, because of the uniform distribution, is correct to O(Az’). With this 
discretization, the equations to solve are 

u. = 0, 

M,‘Uj-, +MjoUj+Mj+Uj+~=O~ (13) 

UN= 1. 

If g is nonzero in the domain of z, analytically as well as with respect to an 
accurate numerical representation, then Eq. (8) with u = gz/g(l) may be used, giving 

Az2M?4-1d2g 
J 

1 -swjz- gi-l +gi+l -swj, 

g dz2 L, gi 

AZ’ Mi’ = 1. 

If g( 1) is zero or infinite, at least in a numerical sense, then Eq. (7) with u = R’ 
must be used, giving 

AZ’ Mi” = -2 - swj, 

Az2jq=1f2 AZ-l& gi+‘-gi-‘e 
gi 

(15) 

From the definition of g one observes that when d becomes very small or 1 VI 
becomes very large Eq. (15) should be used with g’/g given explicitly, if possible, or, 
otherwise, approximately as indicated. Apart from such pathological cases one 
further notes that all the necessary information is contained in g. As g is closely 
related to a measureable pair-correlation function, this is an extra avantage for 
calculation of R based on experimental results. 
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4. ALGORITHM 

Equation (13) may be elegantly solved by a standard method for tridiagonal 
systems [6]. Define a,‘~, such that 

Uj=aj+IUj+L3 j = O,..., N (16) 

with a, = 0 determined by the boundary condition u,, = 0. By insertion into Eq. (13) 
the following consistent recursion relations are found: 

ai+,=- 
Mi’ 

M~+ajM,T’ 

and 
u,= 1, (19) 

uj=aj+,uj+,. (20) 

This algorithm is finite, with the number of operations to perform proportional to N. 
Notice that because of the recursion relations, only one value of a and u need to be 
stored at any time. Thus the storage requirement is very small; in fact, it is possible 
to program the algorithm on a programmable pocket calculator. 

Because of the uniform distribution of points the accuracy of the results can be 
found by use of Richardson extrapolation (deferred approach to the limit) [4]: If 
uj(Az) denotes the solution obtained with discretization AZ = l/N, and ~~(0) the exact 
solution, then the error 

E(j) = uj(Az) - ~~(0) = c, AZ + c, AZ* + C~ Az3 + *em. 

It is well known [4] that, under weak assumptions on u, the O(Az2)-discretization 
chosen makes any odd-ordered coefftcient ci equal to zero. If it is assumed that 
c2 AZ* 4 c, Az4 in the limit of small AZ, then c, may be determined as 

c2(.i) = 
uj(2 AZ) - uj(Az) 

3 AZ’ (21) 

thus estimating the error as 

E(j) = f(~,(2 AZ) - uj(AZ)) (22) 

and using 

I;i = uj(Az) - E(j) (23) 

as an improved value of u, correct to O(Az4). This process is continued until an 
acceptable small error is obtained. 
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5. TEST OF METHOD 

In order to illustrate and test the method on an example of physical interest we 
have chosen a three-dimensional system with a Coulomb potential, with a constant 
diffusion coefficient, and with a distance of closest approach equal to zero. The 
equation to solve is obtained from Eq. (7), 

d21? 22-l dR w 
T+ (1 -z)2 -;i;--sz-4R =O, dz (24) 

where we have chosenz = l/( 1 + x), and x is the separation measured in units of the 
Onsager length re = q,q2/&7’, i.e., V(x) = - l/x. 

We have solved Eq. (24) with sets of different discretizations of the form N, 2N, 
and 4N and monitored the second- and fourth-order errors 

E, = c2 AZ’, E, = c, Az4 (25) 

for z = 0.5 as a function of N, see Fig. 1. In all cases we found that E, is proportional 
to N-‘, and that E, is largely proportional to Nd4, meaning that c2 and c, are 
independent of N, thus justifying the use of the Richardson extrapolation. The 
deviation of E, from an NP4-proportionality is a result of numerical round-off and 
cancellation errors and to the effect of higher order error terms (E6, E, , etc.), which 
could be separated by further extrapolation. 

Notice that the benefits of the extrapolation exceed its cost. Calculations with N 
and 2N points and elimination of the second-order error involve the same number of 
operations as a single calculation with 3N points, while the accuracy is comparable 
to or better than is obtained with 4N points. 

FIG. 1. Second- and fourth-order errors (E, and E4) as a function of the numbers of discretization 
points (N), for three selected values of s. The calculations were performed for a three-dimensional system 
with an attractive Coulomb potential, a distance of closest approach equal to zero, and z = 0.5 (i.e., 
s = I). The insert displays lines with slopes of -2 and -4 for comparison. 
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6. DISCUSSION 

We have presented a numerical method which can be used to solve the boundary 
value problem for I?+, r). The method is very simple and easy to program, and it is 
possible to control the error in an effkient way. 

Abel1 et al. [5] have published a method based on the shooting method. As with 
any shooting method, they have to tind the solution by solving the initial value 
problem several times to locate the shooting parameter y, such that the boundary 
conditions are fulfilled. Based on an inequality they can control the accuracy of the 
result by giving bounds to y. Notice, however, that this does not directly measure the 
error of the function as this is not only determined by the accuracy of y but on the 
method used to solve the initial value problem as well. Because of the possible 
stiffness of the initial value problem it may turn out that for practical purposes it is 
not possible to solve the initial value problem with a constant stepsize, in which case 
the Richardson extrapolation cannot be used. Finally, they solve the boundary value 
problem in an infinite domain. 

The recombination probability could alternatively be calculated by using a variable 
stepsize in r [7]; however, the accuracy of such a calculation is not readily 
controllable, the Richardson estrapolation cannot be used, and the computational 
demands are significantly larger. 

The essential step in the present method is the introduction of a suitable transfor- 
mation z(r) which reflects the physical problem and which has a finite domain. 
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